On limiting spectral distribution of large sample covariance matrices by VARMA(p,q)

نویسندگان

  • Cheng Wang
  • Baisuo Jin
  • Baiqi Miao
چکیده

We studied the limiting spectral distribution of large-dimensional sample covariance matrices of a stationary and invertible VARMA(p,q) model. Relationship of the power spectral density and limiting spectral distribution of large population dimensional covariance matrices of ARMA(p,q) is established. The equation about Stieltjes transform of large-dimensional sample covariance matrices is also derived. As applications, the classical M-P law, VAR(1) and VMA(1) can be regarded as special examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Sample Covariance Matrices without Independence Structures in Columns

The limiting spectral distribution of large sample covariance matrices is derived under dependence conditions. As applications, we obtain the limiting spectral distributions of Spearman’s rank correlation matrices, sample correlation matrices, sample covariance matrices from finite populations, and sample covariance matrices from causal AR(1) models.

متن کامل

Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrix

For a sample of n independent identically distributed p-dimensional centered random vectors with covariance matrix Σn let S̃n denote the usual sample covariance (centered by the mean) and Sn the non-centered sample covariance matrix (i.e. the matrix of second moment estimates), where p > n. In this paper, we provide the limiting spectral distribution and central limit theorem for linear spectral...

متن کامل

Tracy-Widom limit for the largest eigenvalue of a large class of complex Wishart matrices

The problem of understanding the limiting behavior of the largest eigenvalue of sample covariance matrices computed from data matrices for which both dimensions are large has recently attracted a lot of attention. In this paper we consider the following type of complex sample covariance matrices. Let X be an n×p matrix, and let its rows be i.i.d NC(0,Σp). We denote byHp the spectral distributio...

متن کامل

On Asymptotics of Eigenvectors of Large Sample Covariance Matrix

Let {Xij}, i, j = . . . , be a double array of i.i.d. complex random variables with EX11 = 0,E|X11| 2 = 1 and E|X11| 4 <∞, and let An = 1 N T 1/2 n XnX ∗ nT 1/2 n , where T 1/2 n is the square root of a nonnegative definite matrix Tn and Xn is the n×N matrix of the upper-left corner of the double array. The matrix An can be considered as a sample covariance matrix of an i.i.d. sample from a pop...

متن کامل

Limiting spectral distribution of renormalized separable sample covariance matrices when p/ni → 0

We are concerned with the behavior of the eigenvalues of renormalized sample covariance matrices of the form Cn = √ n p ( 1 n A p XnBnX ∗ nA 1/2 p − 1 n tr(Bn)Ap ) as p, n→∞ and p/n→ 0, where Xn is a p×n matrix with i.i.d. real or complex valued entries Xij satisfying E(Xij) = 0, E|Xij | = 1 and having finite fourth moment. A p is a squareroot of the nonnegative definite Hermitian matrix Ap, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011